Problem 58

Estimate the mass of air in a classroom.

Solution

Start by finding the molar mass of air. Assume for simplicity that it's made of 80% nitrogen gas $\left(\mathrm{N}_{2}\right)$ and 20% oxygen gas $\left(\mathrm{O}_{2}\right)$. The average molar mass is then

$$
0.8\left(14.0 \times 2 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+0.2\left(16.0 \times 2 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=28.8 \frac{\mathrm{~g}}{\mathrm{~mol}} .
$$

The aim now is to find how many moles of air are in this classroom. Assume the air is an ideal gas so that the ideal gas law applies.

$$
P V=n R T
$$

Solve for n, the number of moles.

$$
n=\frac{P V}{R T}
$$

Suppose this classroom has a pressure of 1 atmosphere and room temperature, or about 300 K . Assume the volume is about 1000 liters.

$$
n=\frac{(1 \mathrm{~atm})(1000 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{atp}}{\mathrm{~mol} \cdot \bar{K}}\right)(300 \not \mathrm{X})} \approx 40.6 \mathrm{~mol}
$$

The mass of air in this hypothetical classroom is

$$
40.6 \mathrm{~mol} \times 28.8 \frac{\mathrm{~g}}{\mathrm{~mol}} \approx 1000 \mathrm{~g},
$$

or about 1 kilogram.

